In this episode we pick up where we left off last week and add in a breadboard with some buttons to show how the Arduino can take input from the outside using something as simple as a button.

We also cover what button bounce is and some features that are built into the Arduino that will pull a pin to high so that you do not need a resistor in the button circuit.  Lots of good stuff this week.

Downloads

HD Apple HD Apple SD Audio MP3 Android

Basic Button Example

/*
  Button
 
 Turns on and off a light emitting diode(LED) connected to digital 
 pin 13, when pressing a pushbutton attached to pin 2.
 
 
 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached to pin 2 from +5V
 * 10K resistor attached to pin 2 from ground
 
 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.
 
 
 created 2005
 by DojoDave <http://www.0j0.org>
 modified 30 Aug 2011
 by Tom Igoe
 
 This example code is in the public domain.
 
 http://www.arduino.cc/en/Tutorial/Button
 */

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2;     // the number of the pushbutton pin
const int ledPin =  13;      // the number of the LED pin

// variables will change:
int buttonState = 0;         // variable for reading the pushbutton status

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);     
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);    
}

void loop(){
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed.
  // if it is, the buttonState is HIGH:
  if (buttonState == HIGH) {    
    // turn LED on:   
    digitalWrite(ledPin, HIGH); 
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}

Button Debounce Example

/* 
 Debounce
 
 Each time the input pin goes from LOW to HIGH (e.g. because of a push-button
 press), the output pin is toggled from LOW to HIGH or HIGH to LOW.  There's
 a minimum delay between toggles to debounce the circuit (i.e. to ignore
 noise). 
 
 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached from pin 2 to +5V
 * 10K resistor attached from pin 2 to ground
 
 * Note: On most Arduino boards, there is already an LED on the board
 connected to pin 13, so you don't need any extra components for this example.
 
 
 created 21 November 2006
 by David A. Mellis
 modified 30 Aug 2011
 by Limor Fried
 
This example code is in the public domain.
 
 http://www.arduino.cc/en/Tutorial/Debounce
 */

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2;     // the number of the pushbutton pin
const int ledPin =  13;      // the number of the LED pin

// Variables will change:
int ledState = HIGH;         // the current state of the output pin
int buttonState;             // the current reading from the input pin
int lastButtonState = LOW;   // the previous reading from the input pin

// the following variables are long's because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long lastDebounceTime = 0;  // the last time the output pin was toggled
long debounceDelay = 50;    // the debounce time; increase if the output flickers

void setup() {
  pinMode(buttonPin, INPUT);
  pinMode(ledPin, OUTPUT);
}

void loop() {
  // read the state of the switch into a local variable:
  int reading = digitalRead(buttonPin);

  // check to see if you just pressed the button
  // (i.e. the input went from LOW to HIGH),  and you've waited
  // long enough since the last press to ignore any noise: 

  // If the switch changed, due to noise or pressing:
  if (reading != lastButtonState) {
    // reset the debouncing timer
    lastDebounceTime = millis();
  }
 
  if ((millis() - lastDebounceTime) > debounceDelay) {
    // whatever the reading is at, it's been there for longer
    // than the debounce delay, so take it as the actual current state:
    buttonState = reading;
  }
 
  // set the LED using the state of the button:
  digitalWrite(ledPin, buttonState);

  // save the reading.  Next time through the loop,
  // it'll be the lastButtonState:
  lastButtonState = reading;
}


Button Example using internal pullup in the Arduino

/*
 Input Pullup Serial
 
 This example demonstrates the use of pinMode(INPUT_PULLUP). It reads a
 digital input on pin 2 and prints the results to the serial monitor.
 
 The circuit:
 * Momentary switch attached from pin 2 to ground
 * Built-in LED on pin 13
 
 Unlike pinMode(INPUT), there is no pull-down resistor necessary. An internal
 20K-ohm resistor is pulled to 5V. This configuration causes the input to
 read HIGH when the switch is open, and LOW when it is closed.
 
 created 14 March 2012
 by Scott Fitzgerald
 
 http://www.arduino.cc/en/Tutorial/InputPullupSerial
 
 This example code is in the public domain
 
 */

void setup(){
  //start serial connection
  Serial.begin(9600);
  //configure pin2 as an input and enable the internal pull-up resistor
  pinMode(2, INPUT_PULLUP);
  pinMode(13, OUTPUT);

}

void loop(){
  //read the pushbutton value into a variable
  int sensorVal = digitalRead(2);
  //print out the value of the pushbutton
  Serial.println(sensorVal);
 
  // Keep in mind the pullup means the pushbutton's
  // logic is inverted. It goes HIGH when it's open,
  // and LOW when it's pressed. Turn on pin 13 when the
  // button's pressed, and off when it's not:
  if (sensorVal == HIGH) {
    digitalWrite(13, LOW);
  }
  else {
    digitalWrite(13, HIGH);
  }
}